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ABsTRAa 

PHOEBE is a new computer code developed at UNDEMRC as a part of a long-term study 
of coal ash deposition phenomena in combustion systems. The task of developing a new 
code was undertaken to eliminate the various problems encountered with existing phase 
equilibrium codes such as SOLGASMIX and PACKAGE. These codes were not able to 
produce satisfactory comparisons with experimental data and the goal of PHOEBE was to 
apply better techniques to calculate the minimum Gibbs free energy at thermodynamic 
equilibrium. The new PHOEBE algorithm has been rigorously tested against standard 
mathematical functions and is currently being tested against experimental data on coal ash 
slags. This paper discusses the minimization and optimization techniques used in 
PHOEBE. 

I. Introduction 

Understanding the behavior of inorganic constituents during coal combustion is 
needed to predict the development of ash deposit formation, slagging, and fouling in a 
combustor. This requires information on the formation of the various mineralogical phases 
in the vapor, liquid, and solid states and their relationship to the relative amounts of the 
inorganic elements present in the raw coal and to the variations in combustion conditions. 
With this type of data, a better understanding of not only the deposition processes but their 
mitigational aspects as well may be achieved. The calculation of the equilibrium species and 
phase dismbutions provides a good starting point in approximating the requisite data. 

The problem of obtaining the equilibrium values (x*l, ..., x*") of n distinct species 
comprising a thermodynamic system S at a fixed temperature and pressure has been 
extensively addressed in the past, and the utility of obtaining the equilibrium values by 
minimizing the Gibbs free energy of the system has also been thoroughly emphasized (1- 
10). A variety of numerical packages (HALTAFALL, SOLGASMIX, PACKAGE, 
SHIMPO-GOTO, NASA-CEC, etc.,) related to this problem have been reported in the 
literature and their relative merits also discussed. Although the majority of these packages 
seem to perform adequately on many test cases, they sometimes also appear to produce 
quite erroneous results. (It must be pointed out that our experience with the above- 
mentioned packages is limited primarily to SOLGASMIX.) This is not unexpected, since 
conventionally, the calculations are simplified to the extent that the various interaction terms 
in the Gibbs free energy of the system are represented only by the 'free energy of mixing' 
terms, all other interactions being assumed minimal or nonexistent. It has been argued very 
convincingly that it is indeed valid to approximate the activities of the species by their 
respective mole fractions (1 1- 13). Nonetheless, this minimality assumption has important 
consequences for the stability (and hence the existence) of various phases within the 
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system: even the introduction of a simple Lennard-Jones type potential in a non-interactive 
system, it may be recalled, lowers the energy of the sytem, favors the formation of the 
liquid phase, and would perhaps be more representative of the correct free energy of the 
system. 

This in turn leads to the problem of the availability, or lack thereof, of 
thermochemical data. The most widely referred sources of thermodynamic data (16-18) 
often lack data for many of the typical products in coal combustion systems. It is to be also 
noted that the available thermodynamic tables are themselves extrapolated so that further 
extrapolations to unreferenced compounds may lead to additional sources of error. 

The organization of the paper then is as follows. In Section II the mass constrained 
Gibbs free energy minimization problem is discussed in detail. A variety of standard 
numerical methods currently available and their relative merits are also briefly discussed. 
Section I11 describes PHOEBE, a Gibbs free energy minimization program currently under 
development at UNDEMRC. 

II. Mass-Constrained Gibbs Free Energy Minimization 

Let S be a multicomponent thermodynamic system at a given temperature T and 
pressure P comprising the species XI, ...,Xn and let G be Gibbs free energy of S . Let 

Aaajda = ba 

be the mass constraint relations for S where 

11 

Aaaj = stoichiometry coefficient of atom (or element) a in species j in phase a, 

xla = the number of moles of species j in phase a, 

ba = the number of moles of atom (or element) a. 

In Equation 1 the index a ranges from 1 through the number of phases Np. the 
index j ranges from 1 through the number of species N,, and the index a ranges from 1 
through the number of atoms or elements Na. The Einstein summation convention is used 
in Equation 1 and in the rest of the paper. Implicit in Equation 1 are the nonnegativity 
requirements, 

da 2 0, l S j S N s ,  l S a S N p ,  2) 

that need to be satisfied by the molar amounts of the various species in the system. The 
Gibbs free energy of S is written as 

G = Xj,pj 3) 

where the paj are the chemical potentials of the species which are in turn approximated as 
follows: let, 
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be the total number of moles in phase a, and (p,,)aj the standard chemical potential of 
species j in phase a. paj is then given by 

, if a is a pure condensed phase 

Pxi 
&(h)aj + &ln[ 2 I , if a is a gas phase 

, if a is a solid-liquid mixture xi 
&Ch)aj + daln [ 21 

Note that, in Equation 5 the indices a and j are free indices and all implied summations 
over a and j are to be disabled. 

Equations 3-5 approximating the Gibbs free energy of the system are for an 
assumed or apriori phase dismbution. For the system S containing Na distinct elements 
and Np distinct phases the Gibbs phase rule may be written as 

F = (Na-r-1) -Np 6)  

with F denoting the number of degrees of freedom and r denoting the rank of the 
stoichiometry maaix Aa,j . The nonnegativity requirement 

F t O  7) 

on the degrees of freedom of the system then upper bounds the maximum number of extant 
phases at equilibrium according to 

1 S Np S N a - r - l ,  8) 

and the system attains a free energy value G* at equilibrium which is minimal with respect 
to both the possible phase distributions and the possible molar amounts of the species, the 
latter subject to the mass constraints in Equation 1. Hence, with P denoting the set of all 
possible phase dismbutions, which in view of Equation 8 is finite, and G@) denoting the 
Gibbs free energy of S for a particular phase distribution PEP , the mass constrained 
Gibbs free energy minimization problem takes the mathematical form 

h .  
PE p 

inf ( G(P)(xll, ..., xNS) I (~11, ..., x : ~ R ~ ~ ~ ~ ,  Aaajda  = ba ). 9) NP 
Fin 
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We wish to stress a couple of aspects regarding Equation 9. Firstly, it may be 

argued from purely physical considerations that there must exist a unique set x * ~ ~ , . . . , x * ~ '  

of molar values of the species that provides the correspondingly unique minimal of 
equilibrium value G* of the free energy. At the mathematical level, the set 

R = { ( x l l  ,..., xNs)~WNSNp I A*., a, = ba ,  d, Z 0, 1 I j  I N , ,  1 I a  I N p )  10) 

is a compact (closed and bounded) convex subset of the NpNs-dimensional real number 
space WNsNp. The Gibbs free energy G as approximated in Equations 3-5 is a concave, 
smooth (i.e., infinitely differentiable) function on the positive hyperoctant of RNSNP and 
hence in the interior of R. A theorem of Kuhn and Tucker (19) then asserts that any local 
minimizer of Equation 9 is the global minimizer, i.e., that there exists one and only one 
minimizer for 9. Further, this unique minimizing point is given by (20-22) 

NP 

NP 

In physical terms, interpreting 1 as time, Equation 11 merely expresses the fact that the 
equilibrium mole values of the species are given in the asymtotic limit h + - of their 
expectation or average values. 

The second aspect regarding Equation 9 that needs to be messed is that of the 
minimization over the possible phase distributions. The total number of possible phase 
distributions or equivalently the cardinality IP I of the set P is bounded above by 

The estimate in Equation 12 is conservative and in practice the total number of phase 
distributions actually realized are considerably lower. Despite this, for a fairly large system 
(Ns Z 50, Na 2 10 ), the phase distribution count grows very rapidly and the problem 
becomes computationally intractable. Various schemes are being studied and a few 
important results obtained in this regard. A report on these results will soon be appearing 
in a forth-coming paper (31). The perhaps most interesting trend that we have observed so 
far in our numerical studies is that the species appear to behave in the manner of 'bosons' 
prefemng to occupy an already existing phase rather that 'creating' a new one. Our more 
recent studies are expected to shed further light on this rather intriguing aspect of the 
problem. 
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In. PHOEBE 

A computer program called PHOEBE for calculating the equilibrium mole values 
and the Gibbs free energy of a given thermodynamic system has been developed 
inplementing the ideas discussed above. PHOEBE is intended primarily for personal 
computer use and is fully menu driven. The user generates a specific thermodynamic 
system from a large database and the equilibrium evolution for the system as a function of 
temperature can be studied. The average run time for a system comprising approximately 
50 species and 10 elements over a range of 10-12 temperatures is about 2 hours. There 
are no resaictions on the number of species or elements or phases except as dictated by 
available memory. A mainframe version of PHOEBE is currently under development. 

The minimization algorithm adopted is a combination of the "variable metric'' 
algorithms (23) and the projection gradient method (24). Given a point x(O) in the interior 
of the feasible region R, a sequence [x(") I n e  IN ] is generated converging to a local ( and 
by convexity, to the global) minimum of G. If Me)  denotes the constraint matrix of the 
subset of constraints currently active at iteration step k, the idempotent projection matrix P 
(superscript T denotes matrix transpose), 

p = I - M(k)T (MWMWj-1 Me)  13) 

is constructed to project the gradient of G into the orthogonal complement of the kernel of 
Me). It may be observed that the projection matrix P in Equation 13 reduces to the identity 
matrix when restricted to the kernel of MQ. It should also be observed that if the sequence 
of points so generated is a sequence of regular points (25) of R the first order optimality 
conditions are satisfied (26). If non-regular or degenerate points are encountered in the 
generation of the sequence leading to the so-called degeneracy or linear dependency 
problem, these degenerate points need to be appropriately 'sidestepped (27),(28). (In any 
event, a generalized inverse of M(k)M(k)T may be made use of to enter the orthogonal 
subspace of the kernel of Me).) The convergence of the sequence is accelerated in its later 
stages by utilitzing the Hessian of G, or if the problem is too large, by approximating the 
Hessian by a suitable symmetric positive definite matrix. The rate of convergence varies 
between being linear and superlinear. 

In addition to the real Hermiticity of the active or binding constraint matrix 
M(k)M(k)T, its nonnegativity, meaning that each matrix element of M(k)M(k)T is 
nonnegative, has some important consequences. The eigenvalues of M@)M(k)T are all real, 
and in view of the Perron-Froebenius theorems (29-30). the positive eigenvalues are all 
distinct with the largest positive eigenvalue bounded below by the minimum of the row 
sums and bounded above by the maximum of the row sums. Also, the existence of a 
nonnegative eigenvector with eigenvalue equal to the spectral radius of Me)Me)T may be 
asserted. These remarks apply to the Hessian of G as well and are actively utilized in 
resolving the degeneracy problem if and when it arises. 

1 

IV. Conclusions 
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We have been able to develop a fairly satisfactory algorithm for obtaining numerical 
solutions to the mass-constrained Gibbs free energy minimization problem. PHOEBE 
performed quite satisfactorily in test runs on known binary and ternary systems. Some 
coal systems have also been analyzed and excellent results obtained. However, a few of 
the coal systems analyzed also produced unrealistic results which led directly to the 
identification and resolution of the degeneracy problem discussed earlier. Our current 
attempts are now directed towards representing the free energy of the system more 
accurately and towards accelerating the convergence of the iterative scheme. We expect to 
detail these extensions and include comparihve studies of program output and experimental 
data in a forthcoming paper (3 1). 
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